Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Sci Rep ; 13(1): 3884, 2023 03 08.
Article in English | MEDLINE | ID: covidwho-2286227

ABSTRACT

Coronavirus disease 2019 (COVID-19) is spreading rapidly around the world. However, the treatment of vitiligo combined with COVID-19 has not been reported. Astragalus membranaceus (AM) has a therapeutic effect on patients with vitiligo and COVID-19. This study aims to discover its possible therapeutic mechanisms and provide potential drug targets. Using the Chinese Medicine System Pharmacological Database (TCMSP), GEO database and Genecards websites and other databases, AM target, vitiligo disease target, and COVID-19 related gene set were established. Then find the crossover genes by taking the intersection. Then use GO, KEGG enrichment analysis, and PPI network to discover its underlying mechanism. Finally, by importing drugs, active ingredients, crossover genes, and enriched signal pathways into Cytoscape software, a "drug-active ingredient-target signal pathway-" network is constructed. TCMSP screened and obtained 33 active ingredients including baicalein (MOL002714), NEOBAICALEIN (MOL002934), Skullcapflavone II (MOL002927), and wogonin (MOL000173), which acted on 448 potential targets. 1166 differentially expressed genes for vitiligo were screened by GEO. CIVID-19 related genes were screened by Genecards. Then by taking the intersection, a total of 10 crossover genes (PTGS2, CDK1, STAT1, BCL2L1, SCARB1, HIF1A, NAE1, PLA2G4A, HSP90AA1, and HSP90B1) were obtained. KEGG analysis found that it was mainly enriched in signaling pathways such as IL-17 signaling pathway, Th17 cell differentiation, Necroptosis, NOD-like receptor signaling pathway. Five core targets (PTGS2, STAT1, BCL2L1, HIF1A, and HSP90AA1) were obtained by analyzing the PPI network. The network of "active ingredients-crossover genes" was constructed by Cytoscape, and the 5 main active ingredients acting on the 5 core crossover genes acacetin, wogonin, baicalein, bis2S)-2-ethylhexyl) benzene-1,2-dicarboxylate and 5,2'-Dihydroxy-6,7,8-trimethoxyflavone. The core crossover genes obtained by PPI and the core crossover genes obtained by the "active ingredient-crossover gene" network are intersected to obtain the three most important core genes (PTGS2, STAT1, HSP90AA1). AM may act on PTGS2, STAT1, HSP90AA1, etc. through active components such as acacetin, wogonin, baicalein, bis2S)-2-ethylhexyl) benzene-1,2-dicarboxylate and 5,2'-Dihydroxy-6,7,8-trimethoxyflavone to activate IL-17 signaling pathway, Th17 cell differentiation, Necroptosis, NOD-like receptor signaling pathway, Kaposi sarcoma-associated herpesvirus infection, and VEGF signaling pathway and other signaling pathways to achieve the effect of treating vitiligo and COVID-19.


Subject(s)
COVID-19 , Drugs, Chinese Herbal , Hypopigmentation , Vitiligo , Humans , Vitiligo/drug therapy , Vitiligo/genetics , Astragalus propinquus , Interleukin-17 , Network Pharmacology , Benzene , Cyclooxygenase 2 , Computational Biology , NLR Proteins , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Molecular Docking Simulation , Medicine, Chinese Traditional
2.
Viruses ; 15(3)2023 02 27.
Article in English | MEDLINE | ID: covidwho-2268208

ABSTRACT

The outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a serious threat to global public health. In an effort to develop novel anti-coronavirus therapeutics and achieve prophylactics, we used gene set enrichment analysis (GSEA) for drug screening and identified that Astragalus polysaccharide (PG2), a mixture of polysaccharides purified from Astragalus membranaceus, could effectively reverse COVID-19 signature genes. Further biological assays revealed that PG2 could prevent the fusion of BHK21-expressing wild-type (WT) viral spike (S) protein and Calu-3-expressing ACE2. Additionally, it specifically prevents the binding of recombinant viral S of WT, alpha, and beta strains to ACE2 receptor in our non-cell-based system. In addition, PG2 enhances let-7a, miR-146a, and miR-148b expression levels in the lung epithelial cells. These findings speculate that PG2 has the potential to reduce viral replication in lung and cytokine storm via these PG2-induced miRNAs. Furthermore, macrophage activation is one of the primary issues leading to the complicated condition of COVID-19 patients, and our results revealed that PG2 could regulate the activation of macrophages by promoting the polarization of THP-1-derived macrophages into an anti-inflammatory phenotype. In this study, PG2 stimulated M2 macrophage activation and increased the expression levels of anti-inflammatory cytokines IL-10 and IL-1RN. Additionally, PG2 was recently used to treat patients with severe COVID-19 symptoms by reducing the neutrophil-to-lymphocyte ratio (NLR). Therefore, our data suggest that PG2, a repurposed drug, possesses the potential to prevent WT SARS-CoV-2 S-mediated syncytia formation with the host cells; it also inhibits the binding of S proteins of WT, alpha, and beta strains to the recombinant ACE2 and halts severe COVID-19 development by regulating the polarization of macrophages to M2 cells.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Polysaccharides , Spike Glycoprotein, Coronavirus , Humans , Angiotensin-Converting Enzyme 2/metabolism , Anti-Inflammatory Agents/pharmacology , Drug Repositioning , MicroRNAs , Polysaccharides/pharmacology , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Astragalus propinquus/chemistry
3.
Plant Biotechnol J ; 21(4): 698-710, 2023 04.
Article in English | MEDLINE | ID: covidwho-2254579

ABSTRACT

Although plant secondary metabolites are important source of new drugs, obtaining these compounds is challenging due to their high structural diversity and low abundance. The roots of Astragalus membranaceus are a popular herbal medicine worldwide. It contains a series of cycloartane-type saponins (astragalosides) as hepatoprotective and antivirus components. However, astragalosides exhibit complex sugar substitution patterns which hindered their purification and bioactivity investigation. In this work, glycosyltransferases (GT) from A. membranaceus were studied to synthesize structurally diverse astragalosides. Three new GTs, AmGT1/5 and AmGT9, were characterized as 3-O-glycosyltransferase and 25-O-glycosyltransferase of cycloastragenol respectively. AmGT1G146V/I variants were obtained as specific 3-O-xylosyltransferases by sequence alignment, molecular modelling and site-directed mutagenesis. A combinatorial synthesis system was established using AmGT1/5/9, AmGT1G146V/S and the reported AmGT8 and AmGT8A394F . The system allowed the synthesis of 13 astragalosides in Astragalus root with conversion rates from 22.6% to 98.7%, covering most of the sugar-substitution patterns for astragalosides. In addition, AmGT1 exhibited remarkable sugar donor promiscuity to use 10 different donors, and was used to synthesize three novel astragalosides and ginsenosides. Glycosylation remarkably improved the hepatoprotective and SARS-CoV-2 inhibition activities for triterpenoids. This is one of the first attempts to produce a series of herbal constituents via combinatorial synthesis. The results provided new biocatalytic tools for saponin biosynthesis.


Subject(s)
COVID-19 , Plants, Medicinal , Saponins , Triterpenes , Astragalus propinquus/chemistry , Astragalus propinquus/genetics , Astragalus propinquus/metabolism , Saponins/chemistry , Saponins/metabolism , Glycosyltransferases/genetics , SARS-CoV-2 , Triterpenes/metabolism , Protein Engineering , Sugars/metabolism
4.
J Tradit Chin Med ; 41(6): 982-984, 2021 12.
Article in English | MEDLINE | ID: covidwho-1614424

ABSTRACT

OBJECTIVE: To study the possible role of traditional Chinese medicine (TCM) of Huangqi (Radix Astragali Mongolici), Gancao (Radix Glycyrrhizae), Jinyinhua (Flos Lonicerae), and Lianqiao (Fructus Forsythiae Suspensae) in absorption of lung lesions in Corona Virus Disease 2019 (COVID-19) patients. METHODS: A cohort of COVID-19 cases was recruited. During hospitalization, chest computed tomographic (CT) scan and real time polymerase chain reaction (RT-PCR) test were performed every three days. Comparison was held (Western Medicine, WM vs WM plus TCM) on absorption of lung lesions, time interval from admission to negative test result of RT-PCR (ATN), and medical expense. Multivariate cox regression models were built to identify the possible prognostic factor of delayed absorption of lung lesion. RESULTS: The medical expenditure (1163 ± 379 vs 1137 ± 498, P = 0.863) and ATN (13 ± 4 vs 10 ± 4, P = 0.055) were comparable between cases treated with WM plus TCM and cases only received WM. Multivariate cox regression model showed that cases receiving extra TCM had lower risk of delayed absorption of lung lesions [Hazard ratio = 0.24, 95% confidence Interval (0.06, 0.96), P = 0.043]. CONCLUSION: Compared to WM, the treatment of WM plus TCM facilitates the recovery of pulmonary infiltration on COVID-19 cases without significantly increasing medical expense.


Subject(s)
COVID-19 Drug Treatment , Drugs, Chinese Herbal/therapeutic use , Lung/pathology , Adult , Astragalus propinquus , Female , Forsythia , Glycyrrhiza , Hospitalization , Humans , Lonicera , Lung/virology , Male , Medicine, Chinese Traditional , Middle Aged , Plant Extracts
5.
Am J Chin Med ; 48(6): 1315-1330, 2020.
Article in English | MEDLINE | ID: covidwho-1243726

ABSTRACT

Critical care medicine is a medical specialty engaging the diagnosis and treatment of critically ill patients who have or are likely to have life-threatening organ failure. Sepsis, a life-threatening condition that arises when the body responds to infection, is currently the major cause of death in intensive care units (ICU). Although progress has been made in understanding the pathophysiology of sepsis, many drawbacks in sepsis treatment remains unresolved. For example, antimicrobial resistance, controversial of glucocorticoids use, prolonged duration of ICU care and the subsequent high cost of the treatment. Recent years have witnessed a growing trend of applying traditional Chinese medicine (TCM) in sepsis management. The TCM application emphasizes use of herbal formulation to balance immune responses to infection, which include clearing heat and toxin, promoting blood circulation and removing its stasis, enhancing gastrointestinal function, and strengthening body resistance. In this paper, we will provide an overview of the current status of Chinese herbal formulations, single herbs, and isolated compounds, as an add-on therapy to the standard Western treatment in the sepsis management. With the current trajectory of worldwide pandemic eruption of newly identified Coronavirus Disease-2019 (COVID-19), the adjuvant TCM therapy can be used in the ICU to treat critically ill patients infected with the novel coronavirus.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Coronavirus Infections/drug therapy , Drugs, Chinese Herbal/therapeutic use , Immunologic Factors/therapeutic use , Medicine, Chinese Traditional , Pneumonia, Viral/drug therapy , Sepsis/drug therapy , Artemisinins/therapeutic use , Astragalus propinquus , Berberine/therapeutic use , Betacoronavirus , COVID-19 , Critical Illness , Emodin/therapeutic use , Humans , Intensive Care Units , Intestinal Mucosa , Microcirculation , Pandemics , Permeability , Rheum , SARS-CoV-2 , Salvia miltiorrhiza , COVID-19 Drug Treatment
6.
J Food Biochem ; 44(12): e13510, 2020 12.
Article in English | MEDLINE | ID: covidwho-1066711

ABSTRACT

Pneumonia refers to a death-causing infection. Astragali Radix (AR) and Atractylodis Macrocephalae Rhizoma (AMR) are widely used as traditional tonic and promising edible immunomodulatory herbal medicine, but the systemic mechanism is not well understood. Therefore, a strategy based on network pharmacology and molecular docking was designed to explore the systemic mechanism of AR-AMR acting on pneumonia. After a series of bioinformatics assays, seven kernel targets were obtained, including TNF, IL6, IFNG, IL1B, IL10, IL4, and TLR9. And seven key compounds were identified as the synergy components of AR-AMR acting on pneumonia, the four key compounds belonging to AR were (3R)-3-(2-hydroxy-3,4-dimethoxyphenyl)-7-chromanol, formononetin, quercetin, and kaempferol, the three key compounds belonging to AMR were atractylone, 14-acetyl-12-senecioyl-2E, 8E, 10E-atractylentriol, and α-Amyrin. The crucial pathways were mainly related to three modules, including immune diseases, infectious disease, and organismal systems. Collectively, these observations strongly suggest that the molecular mechanisms of AR-AMR regulating pneumonia were closely related to the correlation between inflammation and immune response. PRACTICAL APPLICATIONS: Astragali radix and Atractylodis macrocephalae rhizoma can be used as "medicine-food homology" for dietary supplement. AR and AMR are widely used as a traditional tonic and promising edible immunomodulatory herbal medicine. The AR-AMR herb pairs are used for compatibility many times in the recommended prescriptions in COVID-19 develop pneumonia in China. However, the ingredients and mechanisms of AR-AMR acting on Pneumonia via immunomodulation are unclear. In this paper, bioinformatics and network biology were used to systematically explore the mechanisms of the AR-AMR herb pairs in treatment of pneumonia, and further analyze the correlation mechanism between it and COVID-19 develop pneumonia. To sum up, our study reveals the interrelationships between components, targets, and corresponding biological processes of AR-AMR acting on pneumonia. Understanding these relationships may provide guidance and theoretical basis for the further application of AR-AMR herb pairs.


Subject(s)
Drugs, Chinese Herbal/chemistry , Pneumonia/immunology , Astragalus propinquus , COVID-19/immunology , Cytokines/genetics , Cytokines/immunology , Drugs, Chinese Herbal/pharmacology , Humans , Immunomodulation/drug effects , Molecular Docking Simulation , Pneumonia/drug therapy , Pneumonia/genetics , Rhizome/chemistry , COVID-19 Drug Treatment
7.
Chin J Integr Med ; 26(4): 243-250, 2020 Apr.
Article in English | MEDLINE | ID: covidwho-1125

ABSTRACT

OBJECTIVE: Since December 2019, an outbreak of corona virus disease 2019 (COVID-19) occurred in Wuhan, and rapidly spread to almost all parts of China. This was followed by prevention programs recommending Chinese medicine (CM) for the prevention. In order to provide evidence for CM recommendations, we reviewed ancient classics and human studies. METHODS: Historical records on prevention and treatment of infections in CM classics, clinical evidence of CM on the prevention of severe acute respiratory syndrome (SARS) and H1N1 influenza, and CM prevention programs issued by health authorities in China since the COVID-19 outbreak were retrieved from different databases and websites till 12 February, 2020. Research evidence included data from clinical trials, cohort or other population studies using CM for preventing contagious respiratory virus diseases. RESULTS: The use of CM to prevent epidemics of infectious diseases was traced back to ancient Chinese practice cited in Huangdi's Internal Classic (Huang Di Nei Jing) where preventive effects were recorded. There were 3 studies using CM for prevention of SARS and 4 studies for H1N1 influenza. None of the participants who took CM contracted SARS in the 3 studies. The infection rate of H1N1 influenza in the CM group was significantly lower than the non-CM group (relative risk 0.36, 95% confidence interval 0.24-0.52; n=4). For prevention of COVID-19, 23 provinces in China issued CM programs. The main principles of CM use were to tonify qi to protect from external pathogens, disperse wind and discharge heat, and resolve dampness. The most frequently used herbs included Radix astragali (Huangqi), Radix glycyrrhizae (Gancao), Radix saposhnikoviae (Fangfeng), Rhizoma Atractylodis Macrocephalae (Baizhu), Lonicerae Japonicae Flos (Jinyinhua), and Fructus forsythia (Lianqiao). CONCLUSIONS: Based on historical records and human evidence of SARS and H1N1 influenza prevention, Chinese herbal formula could be an alternative approach for prevention of COVID-19 in high-risk population. Prospective, rigorous population studies are warranted to confirm the potential preventive effect of CM.


Subject(s)
Betacoronavirus , Coronavirus Infections/therapy , Drugs, Chinese Herbal/therapeutic use , Epidemics , Medicine, Chinese Traditional , Pneumonia, Viral/therapy , Astragalus propinquus , COVID-19 , Clinical Trials as Topic , Coronavirus Infections/drug therapy , Epidemics/history , Epidemics/prevention & control , History, Ancient , Humans , Infection Control/history , Infection Control/methods , Influenza A Virus, H1N1 Subtype , Influenza, Human/therapy , Medicine, Chinese Traditional/history , Medicine, Chinese Traditional/methods , Pandemics , Qi , SARS-CoV-2 , Severe Acute Respiratory Syndrome/therapy , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL